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Abstract. Traditionally, phase transitions are defined in the thermodynamic limit only. We discuss how
phase transitions of first order (with phase separation and surface tension), continuous transitions and
(multi)-critical points can be seen and classified for small systems. “Small” systems are systems where the
linear dimension is of the characteristic range of the interaction between the particles; i.e. also astrophysical
systems are “small” in this sense. Boltzmann defines the entropy as the logarithm of the area W (E,N) =
eS(E,N) of the surface in the mechanical N-body phase space at total energy E. The topology of S(E,N)
or more precisely, of the curvature determinant D(E,N) = ∂2S/∂E2 × ∂2S/∂N2 − (∂2S/∂E∂N)2 allows
the classification of phase transitions without taking the thermodynamic limit. Micro-canonical thermo-
statistics and phase transitions will be discussed here for a system coupled by short range forces in another
situation where entropy is not extensive. The first calculation of the entire entropy surface S(E,N) for the
diluted Potts model (ordinary (q = 3)-Potts model plus vacancies) on a 50×50 square lattice is shown. The
regions in {E,N} where D > 0 correspond to pure phases, ordered resp. disordered, and D < 0 represent
transitions of first order with phase separation and “surface tension”. These regions are bordered by a line
with D = 0. A line of continuous transitions starts at the critical point of the ordinary (q = 3)-Potts model
and runs down to a branching point Pm. Along this line rD vanishes in the direction of the eigenvector
v1 of D with the largest eigen-value λ1 ≈ 0. It characterizes a maximum of the largest eigenvalue λ1. This
corresponds to a critical line where the transition is continuous and the surface tension disappears. Here
the neighboring phases are indistinguishable. The region where two or more lines with D = 0 cross is the
region of the (multi)-critical point. The micro-canonical ensemble allows to put these phenomena entirely
on the level of mechanics.

PACS. 05.20.Gg Classical ensemble theory – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) –
05.70.Fh Phase transitions: general studies

1 Introduction

Nuclei, atomic clusters and astrophysical objects are not
large compared to the range of their forces. Therefore,
these systems are not extensive. (In the following we
call systems “non-extensive” in a somewhat more general
sense: If they are divided into pieces, their entropy is not
the sum of the entropies of their parts in contrast to con-
ventional extensive systems where this is assumed at least
if the pieces are themselves macroscopic.) Although the
largest systems possible belong to this group we call these
systems “small”. But also at phase transitions in systems
with short range forces does the entropy of the surface
separating the different phases not scale with the size of
the system. Lateron we define systems to be “small” pre-
cisely by the condition that the entropy S(E,N, V ) does
not scale with the number of particles or the volume and
especially if S(E,N, V ) has some convex regions.

a e-mail: gross@hmi.de

Most applications of thermodynamics to “small”
systems are more or less transcriptions from the
thermodynamics of macroscopic systems, cf. the book
by Hill [1]. Conventional thermo-statistics, however, re-
lies heavily on the use of the thermodynamic limit
(V→∞|N/V , or µ const.) and extensivity, cf. e.g. the book
of Pathria [2]. This is certainly not allowed for our sys-
tems. Extensivity is nowadays considered to be an es-
sential condition for thermodynamics to work, cf. Lieb
and Ygnvason [3]. That the micro-canonical statistics
works well also for “small” systems without invoking
extensivity will be demonstrated here for finite nor-
mal systems. The use of the thermodynamic limit and
of extensivity, however, is closely intervowen with the
development of thermodynamics and statistical mechan-
ics since its beginning more than hundred years ago.
When we extend thermodynamics to “small” systems
we should establish the formalism of thermodynamics
starting from mechanics in order to remain on a firm
basis. This is an old program since Boltzmann and
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Einstein [4,5]. We will see how this idea guides us to more
and deeper insight into the most dramatic phenomena
of thermodynamics, phase transitions. Moreover, it gives
the most natural extension of thermo-statistics to some
non-extensive systems without invoking any modification
of the entropy like that proposed by Tsallis [6] see also [7].

In the following section we sketch a deduction of
thermo-statistics from the principles of mechanics alone.
Nothing outside of mechanics must be invoked. This was
the starting point of Boltzmann [4], Gibbs [8], Einstein
[9,5] and the Ehrenfests [10,11] at the beginning of this
century. They all agreed on the logical hierarchy of the
micro-canonical as the most fundamental ensemble from
which the canonical, and grand-canonical ensembles can
be deduced under certain conditions. According to Gibbs
the latter two approximate the micro ensemble in the ther-
modynamic limit of infinitely many particles if the system
is homogeneous. Then surface effects and fluctuations can
be ignored relatively to the bulk mean values. This is the
main reason why the thermodynamic limit became ba-
sic in the statistical foundation of macroscopic thermo-
dynamics. However, it was Gibbs [12] who stressed that
the equivalence of the three ensembles is not even true at
phase transitions of first order, even in the thermodynamic
limit.

This chapter repeats the familiar deduction of statis-
tical mechanics as it was first formulated by Gibbs [8].
However, we will indicate at which point the main stream
of logical steps towards a thermodynamics of “large” sys-
tems has to be left in order to cover also “small” and
non-extensive systems.

Just a remark is neccessary here: one might think that
a small system embedded in a heat bath may be described
by the canonical or even the grand-canonical ensemble. A
heat bath interacts with the system via its surface. For
small systems these surface mechanisms are important.
They affect the physical properties and must be specified.
Certainly more must be controlled in such cases than just
the mean energy (temperature) as is assumed in a canon-
ical treatment. This would be only correct for an infinite
system, with short range interactions, and if we wait an
infinitely long time, then the details of the physical mech-
anisms in the surface contacting the system with the bath
become unimportant relatively to the bulk.

The third section addresses phase transitions. First,
the basics of the conventional definition of phase transi-
tions in the thermodynamic limit (V→∞|N/V, or µ const.)
by the theory of Yang and Lee [13] are reminded. Then
this definition is translated into the micro-canonical pic-
ture and the source of the non-analyticities of the canoni-
cal thermodynamic potentials is traced to the topology of
the micro-canonical entropy function, esp. its curvature.

In the fourth section we explain the general fea-
tures of the micro-canonical phase diagram as function
of fixed energy density (e = E/V ) and particle number-
(n = N/V )/magnetization-density, at first, with the
well-known example of the Ising model and the (q = 1)
diluted Potts model. It is shown how its phase space is
limited by the line of random configurations which have

the maximum possible entropy. Further the region of “field
driven” phase separation into spontaneously magnetized
clusters (first order transition) can be well-studied in the
energy-magnetization or the energy-particle number phase
diagram. (Remark: the distinction between “field driven”
and “temperature driven” transition makes sense only for
the Ising model. Due to its intrinsic symmetry M → −M
the energy-axis is also the main curvature direction for
M = 0. This is of course not the case for systems with-
out this symmetry.) Then the diluted Potts model with
q = 3 is introduced. It is sketched which features of its
phase diagram are to be expected in the case of a “small”
system.

Section 5 gives a short discussion of the main steps
of the simulation and in Section 6 the numerical results
are shown. We present the first view of the entire entropy-
density surface s(e, n) as function of energy density (e) and
particle number density (n) for the diluted (q = 3)-Potts
model on a finite 2-dim lattice with “volume”1 V = L2.
More insight into the phase diagram of the model is given
by an overall view of the determinant of the curvature den-
sity d(e, n). Various kinds of phase transitions and critical
lines can be seen and classified. A subsection is addressed
to the essential differences between the micro-canonical
and the grand-canonical phase diagram. The information
lost by the latter representation is emphasized.

The following section discusses the validity of the sec-
ond law of thermodynamics in non-extensive systems with
a convex s(e, n). The consequences of convexity of the en-
tropy for Weinhold’s geometric interpretation of thermo-
dynamics are discussed. It will be explained that a con-
vexity of S(E,N) is not in contradiction to the second law
of thermodynamics.

Finally, our main conclusions on phase transitions
in “small” non-extensive systems are summarized in
Section 8.

2 On the mechanical background
of thermo-statistics

An equilibrated many-body system is characterized by few
macroscopic quantities:

1) its energy E, mass (number of atoms) N , volume V ;
2) its entropy S;
3) its temperature T , pressure P , and chemical poten-

tial µ.

There are important qualitative differences between these
three groups: All variables of the first group have a clear
mechanical significance. They are conserved and well de-
fined at each point of the N -body phase space. The inter-
nal dynamics of the system cannot leave the shell in phase
space which is defined by these variables. Also entropy as
the most important quantity within thermodynamics has

1 In the following we often skip the volume V as third vari-
able as this is always hold fixed. Of course for finite systems the
shape of the container matters. In the diluted Potts model we
use a square lattice with periodic boundaries (“square torus”).
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a clear mechanical foundation since Boltzmann. His grave-
stone has the famous epitaph:

S = k lnW

relating the entropy S to the size W (E,N, V ) = ε0trδ(E−
HN ) of the energy (E) surface in the N -body phase space
at given volume (V ). Here ε0 is a suitable small energy
constant which does not affect any variation of the en-
tropy, HN is the N -particle Hamiltonian, and

trδ(E −HN ) =
∫

d3Np d3Nq

N !(2π~)3N
δ(E −HN{q, p}). (1)

The set of points on this surface defines the micro-
canonical ensemble. In contrast to the conserved quan-
tities which are defined at each phase space point, the
entropy refers to the whole micro-canonical ensemble.

Remark: for a system with discrete energies Ei e.g. a lat-
tice or a quantum system with energy spacing ε0 one
should define the micro-canonical partition sum by the
number of states at this energy. When we discuss deriva-
tives of W we imagine a suitable smoothing of this.

It is important to notice that Boltzmann’s and also
Einstein’s formulation allows for defining the entropy en-
tirely within mechanics by Smicro := ln[W (E,N, V )]. It
is a single valued, non-singular, in the classical case mul-
tiply differentiable, function of all “extensive”, conserved
dynamical variables. No thermodynamic limit must be in-
voked and this definition applies to non-extensive like our
“small” systems as well.

The third group of quantities which characterize the
thermodynamical state of an equilibrated many-body
system, temperature, pressure and chemical potential
have no immediate mechanical significance. Within micro-
canonical statistics they are defined by the derivatives of
the entropy S(E,N, V ) vs. the conserved quantities:

1
T

=
∂S

∂E
(2)

µ = −T ∂S
∂N

(3)

P = T
∂S

∂V
· (4)

From the mechanical point of view they are secondary, de-
rived quantities. This difference to the two other groups
of variables will turn out to be significant for “small” sys-
tems. Again, like entropy itself, these quantities character-
ize the whole micro-canonical ensemble, not an individual
point in the N -body phase space.

Starting from this point, the conventional thermo-
statistics assumes extensivity and explores the ther-
modynamic limit (V → ∞|N/V , or µ const.) cf. [2]. This
procedure follows Gibbs [8]. He introduced the canon-
ical ensemble, which since then is the basic of all
modern thermo-statistics. The link between both en-
sembles is established by a Laplace transform. E.g.
the usual grand-canonical partition sum is the dou-
ble Laplace transform of the micro-canonical partition

sum W (E,N, V ) = eS(E,N,V ):

Z(T, µ, V ) =
∫∫ ∞

0

dE
ε0

dN e−[E−µN−TS(E,N,V )]/T

=
V 2

ε0

∫∫ ∞
0

de dn e−V [e−µn−Ts(e,n,V )]/T . (5)

In the thermodynamic limit it is useful to work with the
energy density e = E/V , the particle number density
n = N/V , and the entropy density s = S/V , cf. the right
expression in equation (5).

3 Phase transitions micro-canonically

According to Yang and Lee [13] phase transitions are in-
dicated by singularities of the grand-canonical potentials
(∝ 1

V ln[Z]) as function of z = eµ/T on the positive real
z-axis. These, however, can occur in the thermodynamic
limit (V →∞|µ const.) only. For finite volumes the num-
ber of particles N is finite. Consequently, Z is a sum of
a finite number of powers zN and 1

V ln[Z] is analytical for
positive z at any T . Are there no phase transitions in finite
systems?

There are phenomena observed in finite systems which
are typical for phase transitions. Sometimes this is even so
in astonishingly small systems like nuclei and atomic clus-
ters of ∼ 100 atoms [14–16]. In reference [17] we showed
that their characteristic parameters as transition temper-
ature, latent heat, and surface tension are – in the case of
some metals – already for thousand atoms close, though of
course not equal, to their known bulk values. Therefore, it
seems to be fully justified to speak in these cases of phase
transitions of first order.

We need an extension of thermodynamics to “small”
systems which avoids the thermodynamic limit. However,
here is a severe problem. The three popular ensembles, the
micro-canonical, the canonical, and the grand-canonical
ensembles are not equivalent for “small” systems. The
energy per particle can fluctuate around its mean value
〈E/N〉 in the (grand-)canonical ensemble whereas the en-
ergy fluctuations are zero in the micro-canonical ensem-
ble. Moreover, the heat capacity is strictly positive in the
canonical ensembles whereas it may become negative in
the micro ensemble. It was Gibbs himself who warned for
the use of the canonical ensemble at phase transitions of
first order [12]. In this situation it is certainly advisable to
keep close contact with mechanics. It is helpful to realize
that the fundamental micro-canonical ensemble as intro-
duced by Boltzmann is the only one which has a clear
mechanical definition [18,5] for finite systems.

To extend the definition of phase transitions by Yang
and Lee to finite systems we study which feature of the
micro-canonical partition sum W (E,N, V ) leads to singu-
larities of the grand-canonical potentials 1

V ln[Z] as func-
tion of z = eµ/T by the Laplace transform equation (5).
In the thermodynamic limit V → ∞|µ const. this integral
can be evaluated by asymptotic methods. As far as the en-
tropy surface s(e, n) has everywhere negative curvatures
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the integrand of equation (5) has a single maximum. For
large V the Laplace integral (r.h.s of Eq. (5)) is then domi-
nated by the contribution of this peak. This is a stationary
point {es,ns} where T−1 = ∂s/∂e, ν = −µ/T = ∂s/∂n. If
there is only a single stationary point then there is a one
to one mapping of the grand-canonical ensemble to the
micro-canonical one and energy-fluctuations disappear.

This, however, is not the case at phase transitions of
first order. Here the grand-canonical ensemble contains
several Gibbs states (stationary points) at the same tem-
perature and chemical potential which contribute sim-
ilarly to the integral (5). Consequently, the statistical
fluctuations of e and n do not disappear in the grand-
canonical ensemble even in the thermodynamic limit. This
is the reason why Gibbs himself excluded phase separa-
tions [12]. Between the stationary points s(e, n) has at
least one principal curvature ≥ 0. Here van Hove’s con-
cavity condition [19] for the entropy s(e, n) is violated. In
the thermodynamic limit these points get jumped over by
the integral (5) and ln[Z] becomes non-analytic. Conse-
quently, we define phase transitions also for finite systems
topologically by the points and regions of non-negative
curvature of the entropy surface s(e, n) as a function of
the mechanical, conserved “extensive” quantities like en-
ergy, mass, angular momentum etc.

The central quantity of our further discussion the de-
terminant of the curvatures of s(e, n) is defined as

d(e, n) =

∥∥∥∥∥∥∥
∂2s

∂e2

∂2s

∂n∂e
∂2s

∂e∂n

∂2s

∂n2

∥∥∥∥∥∥∥ =
∥∥∥∥ see sensne snn

∥∥∥∥ . (6)

Also critical fluctuations, i.e. abnormally large fluctu-
ations of some extensive variable in the grand-canonical
ensemble or the eventual divergence of some susceptibil-
ities are micro-canonically connected to the vanishing of
the curvature determinant, e.g. in the following examples
of d(e, n) or d(e,m) respectively: The micro-canonical spe-
cific heat is given by:

cmicro(e, n, V ) =
∂e

∂T

∣∣∣∣
ν

= − snn
T 2d(e, n)

, (7)

d =
d(βν)
d(en)

(8)

or the isothermal magnetic susceptibility by:

χmicro,T (e, n, V ) =
∂m

∂B

∣∣∣∣
T

=
see

d(e,m)
, (9)

with see =
∂2s

∂e∂e
etc. (10)

In the case of a classical continuous system s(e, n) is
everywhere finite and multiply differentiable. In that
case the inverse susceptibilities [cmicro(e, n, V )]−1 and
[χmicro,T (e, n, V )]−1 are well behaved smooth functions of
their arguments even at phase transitions. Problems arise
only if the susceptibilities are considered as functions of
the “intensive” variables T , and ν or B [20]. In the case of

lattice systems we can only assume that the inverse sus-
ceptibilities are similarly well behaved. This will be further
illuminated in the Section 6.2.

Experimentally one identifies phase transitions of first
order of course not by the non-analyticities of 1

V ln[Z] but
by the interfaces separating coexisting phases, e.g. liq-
uid and gas, i.e. by the inhomogeneities of the system
which become suppressed in the thermodynamic limit in
the grand-canonical ensemble. This fact was early realized
by Gibbs [21] and he emphasized that using S vs. volume
at phase separation “has a substantial advantage over any
other method because it shows the region of simultaneous
coexistence of the vapor, liquid, and solid phases of a sub-
stance, a region which reduces to a point in the more usual
pressure-temperature plane”. That is also the reason why
for the grand-canonical ensemble the more mathematical
definition of phase transitions [13] is needed. The main ad-
vantage of the micro-canonical ensemble is that it allows
for inhomogeneities as well and we can keep much closer
to the experimental criteria.

Interfaces have three opposing effects on the entropy:

– An entropic gain by putting a part (N1) of the system
from the majority phase (e.g. solid) into the minor-
ity phase (bubbles, e.g. gas) with a higher entropy per
particle. However, this has to be paid by additional
energy ∆E to break the bonds in the “gas”-phase. As
both effects are proportional to the number of parti-
cles N1 being converted, this part of the entropy rises
linearly with the additional energy.

– With rising size of the bubbles their surfaces grow.
This is connected to an entropic loss (surface entropy)
proportional to the interface area due to additional
correlations between the particles at the interface. As
the number of surface atoms is∝ N2/3

1 this is not linear
in ∆E and leads to a convex intruder in S(E,N, V ),
the origin of surface tension [22].

– An additional mixing entropy for distributing the N1-
particles in various ways over the bubbles.

At a (multi-) critical point two (or more) phases become
indistinguishable because the interface entropy (surface
tension) disappears.

4 The model and its qualitative features

In this paper we want to discuss how critical and also
multi-critical points manifest themselves in the micro-
canonical statistics of a finite diluted Potts model.

It is helpful first to remind the main physical effects
to be expected: we start with the well-known properties
of the Ising model (written here as a Potts model with
q = 2 [23]). The Hamiltonian and the magnetization are
defined as:

H = −
n.n.pairs∑

i,j

δσi,σj −B
∑
i

σi (11)

M =
∑
i

σi. (12)
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Fig. 1. Phase diagram in magnetization (m) and energy (e)
per spin particle for the Ising model (ordinary (q = 2)-Potts
model) in the thermodynamic limit. The upper parabolic line is
the locus of the completely random configuration e = −(m2 +
1) with maximum entropy. The physical possible phase space
points are in the two shaded regions. The darkly shaded region
is the phase space of first order transition and coexistence of
drops with positive and drops with negative magnetization. It
is inaccessible in the grand-canonical ensemble. The dot gives
the critical point (ec = −(1 + 1√

2
), mc = 0).

The double sum runs over nearest neighbor spin-pairs
only [23,24].

The two-dimensional Ising model was extensively dis-
cussed as function of temperature T and magnetic field
B = 0 in the grand-canonical ensemble for L→∞ (ther-
modynamic limit) [24,2]. As known from Onsager’s so-
lution it has a continuous (second order) critical point
at B = 0 and βc = 1

Tc
= 0.5 ln(

√
2 + 1) [23,25]. Above

the critical point, T > Tc there is a disordered phase
with vanishing magnetization for B = 0. Below Tc there
is a bifurcation of the spontaneous magnetization curve
M(T,B → 0) = sign(B)L2mspontan(T ). As function of the
extensive variables {E,M} betweenM = ±L2mspontan(T )
there is a whole region with phase separation which is inac-
cessible to the grand-canonical ensemble. Also the internal
energy per lattice point e(T,B = 0) is analytically known
in the thermodynamic limit cf. [2]. This may be inverted
to get the function:

m(e,B → 0)=
{

0 , e≥ec = −(1+ 1√
2
)

sign(B)mspontan(e) , e<ec
·

(13)

Then the phase diagram in the {e,m} plane can be drawn
as in Figure 1.

At energies e > ec = −(1 + 1√
2
) one has a disordered

(“gas”) phase. At ec = −(1+ 1√
2
),m = 0 there is a critical

point of continuous transition with vanishing surface ten-
sion. From here an inhomogeneous region of condensed
phase starts towards lower energies (several clusters of
positive or negative magnetization coexist separated by
interfaces). In the thermodynamic limit the overall mag-
netic field 〈B〉 vanishes here. This region is bordered by
the curve mspontan(e,B = 0). Approaching this border
from inside with fixed e and rising m, the clusters with the
opposite magnetization get depleted and the surfaces be-
tween the clusters disappears. (However, even when there
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Fig. 2. Phase diagram for the diluted (q = 1)-Potts model
in the thermodynamic limit. With the transformation σi =
2oi − 1 of the two possible occupation numbers to the spin
on site i and m = 1

L2

P
i σi this is analogous to the energy-

magnetization plot of the Ising model. The dot gives the critical
point (ec ≈ −0.853, nc = 0.5). The darkly shaded region is the
phase space of phase coexistence which is inaccessible in the
grand-canonical ensemble.

are no clusters of the wrong magnetization there should
still be fluctuations with the other, wrong magnetization
because these states have a nonvanishing entropy. There
is a general impossibility to distinguish a phase separa-
tion from a fluctuation within an individual configuration.
This is a realistic example for the definition of a phase as a
property of the entire ensemble only.) This region of phase
separation is darkly shaded in Figure 1 and is inaccessible
to the grand-canonical ensemble.

The following Gedanken-experiment may illuminate
why this region cannot be accessed in the grand-canonical
ensemble: suppose one prepares the system at a sharp en-
ergy and magnetization in the region with positive cur-
vature. Then one puts the system into a heat bath with
temperature Ttr and chemical potential (magnetic field)
µtr where it will be suddenly exposed to energy- and
magnetization- (particle number) fluctuations of arbitrary
size. Because of the positive curvature of its entropy the
system is unstable and will receive or loose sufficient en-
ergy to convert entirely into the gas or entirely into the
solid phase where its free energy is lower. The latent heat
which is neccessary for this will be spended (absorbed) by
the bath.

The Ising model can be modified by the transforma-
tion oi = 1

2 (σi+1) and Hlg = − 1
2

∑
i,j δoi,+1δoj ,+1 into the

diluted (q = 1)-Potts model. Here the lattice points with
oi = 0 are vacancies. Figure 2 shows the phase diagram
of the diluted (q = 1)-Potts model corresponding to the
phase diagram of the Ising model as discussed above. The
three lines indicate (from left to right) the ground state
(e0(n) = −2n), the critical line, and the line of random
(maximum entropy) configuration (emax(n) = −2n2). The
dot gives the critical point which corresponds to the crit-
ical end point of the phase separation in the liquid-gas
transition. Between the ground state and the critical line
is the {e, n}-region (darkly shaded) of first order phase
transition with phase separation. Here the system prefers
inhomogeneous configurations with droplets enbedded in
the gas. This corresponds to the above mentioned similar



120 The European Physical Journal B

inhomogeneous region of the Ising model at energies below
the Ising critical point (ec = −(1 + 1√

2
),mc = 0), where

clusters of positive magnetization and negative magneti-
zation coexist. In the thermodynamic limit we expect the
micro-canonical entropy s(e, n) to be flat in the shaded re-
gion. The whole darkly shaded region of inhomogeneities
is not accessible in the grand-canonical ensemble. This is a
striking example of the dramatic loss of information when
the grand-canonical ensemble is addressed to phase tran-
sitions. Above the critical line we have the region of the
pure disordered phase. Here s(e, n) is concave.

In the following we investigate the 3-states diluted
Potts model now on a finite 2-dim (here L2 = 502) lattice
with periodic boundaries in order to minimize effects of
the external surfaces of the system. The model is defined
by the Hamiltonian:

H = −
n.n.pairs∑

i,j

oiojδσi,σj (14)

n = L−2N = L−2
∑
i

oi.

Each lattice site i is either occupied by a particle with
spin σi = 1, 2, or 3 or empty (vacancy). The sum is over
neighboring lattice sites i, j, and the occupation numbers
are:

oi =
{

1, spin particle in site i
0, vacancy in site i. (15)

This model is an extension of the ordinary (q = 3)-Potts
model to allow also for vacancies. At zero concentration
of vacancies (n = 1), the system has a continuous phase
transition at ec = 1+ 1√

q ≈ 1.58 [26,2]. With rising number
of vacancies the probability to find a pair of particles at
neighboring sites with the same spin orientation decreases.
The inclusion of vacancies has the effect of an increasing
effective qeff ≥ 3. This results in an increase of the critical
energy of the continuous phase transition with decreasing
n and provides a line of continuous transition, which is
supposed to terminate when qeff becomes larger than 4.
Here the transition becomes first order.

At smaller energies the system is in one of three or-
dered phases (spins predominantly parallel in one of the
three possible directions). We call this the “solid” phase.
This scenario gets full support by our numerical findings
in the next sections.

In the following, we will show for the case of the di-
luted (q = 3)-Potts model how the total micro-canonical
entropy surface S(E,N) uncovers first order phase tran-
sitions, continuous phase transitions, critical, and multi
critical points even for small systems and non-extensive
systems. This is an extension of previous work on systems
with one thermodynamic degree of freedom like the frag-
mentation phase transition in highly excited nuclei [14],
in atomic clusters [17], and in the ordinary Potts model
[22,27]. The main purpose for the study of systems with
two thermodynamic degrees of freedom like {E,N} is the
possibility to localize (multi-)critical points.

5 Simulation method

The simulation methods proceeded in two steps: We first
covered all space {E = e× L2, N = n× L2}, L = 50 by a
mesh with about 1000 knots with distances of ∆e = 0.08
and∆n = 0.04. At each knot {ei, nk} we performed micro-
canonical simulations (≈ 2 × 108 events) to get a his-
togram of the probabilities P (ei, nk) = eS for the system
to be distributed in the narrow region (Ei± 4)× (Nk± 4)
of phase space. Local derivatives β = (∂S(E,N)/∂E)N ,
−βµ = ν = (∂S(E,N)/∂N)E in each histogram give a
first “measurement” of the “intensive” quantities. These
are used to interpolate β, ν over the gaps between the
knots of our mesh cf. [28].

1) From the first interpolation we get an estimate β0, ν0

for the center of any region {∆e×∆n}.
2) In a second iteration step we sample P1(e, n) =

P (e, n) e−β0L
2(e−µ0n) in a broader {e, n} domain. This

is chosen to touch or overlap the next neighboring re-
gion. This way a dense covering of the entire {e, n}
space is achieved.

3) A fourth order regression fit f4(e, n) in e and in n
to ln[P1(e, n)] is performed, from which we determine
the two principal axes of curvature λ1, λ2 of s(e, n)
and then can rotate if desired the frame of the basic
rectangle in {e, n} to be parallel to the main curvature
axes.

4) The last step is then a longer and extensive sampling of
P2(e, n) = e−f4(e,n)P1(e, n) in the new basic rectangle.

5) Eventually one has to recycle steps 3 and 4 a few times
up to the time one obtains a sufficiently uniform cov-
ering of P2(e, n).

6) At the end on gets back the original by P (e, n) =
ef4(e,n)eβ0L

2(e−µ0n)P2(e, n).

We obtain a broad and uniform covering of the whole
{e, n} space. This way one gets the most effective (and
fast) “measurement” of s(e, n), β(e, n), ν(e, n) up to all
third order derivatives of s(e, n) e.g. see(e, n) or seen(e, n)
etc.. Technical details of our method will be published
in [29].

6 Results

Figure 3 shows smicro(e, n). Grid lines are in the direc-
tion [e− e0(n)]/[emax(n) − e0(n)] = const and n = const,
(e0(n) = −2n, emax(n) = − 2n2

q ). The grey levels are deter-

mined in Figure 4: regions above ĈPmB: concave, d > 0,
pure phase (disordered, gas), in the triangle APmC con-
cave, pure phase, ordered (solid); below ÂPmB: convex,
d < 0, phase-separation, first order; at the dark lines like
ÂPmB we have d(e, n) = 0: these are termination lines
of the first order transition; medium dark lines like ĈPm:
v1 ·∇d = 0, here the curvature determinant has an ex-
tremum in the direction of the largest curvature eigen-
vector v1 (remember: in the normal concave region of
s(e, n) the curvatures are both negative. A vanishing or



D.H.E. Gross and E.V. Votyakov: Phase transitions in “small” systems 121

-1.5
-1

-0.5
0

e

0
0.25

0.5
0.75
1

n

0.5

1

1.5

s

C

A BD

Pm

1 5
-1

-0.5
0

0
0.25

0.5
0.75n

Fig. 3. Entropy smicro(e, n).
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Fig. 4. Contour plot of the determinant of curvatures d(e, n)
defined in equation (16). The grey levels are as in Figure 3: re-

gions above \CPmB: concave, d > 0, pure phase (disordered,
gas), in the triangle APmC concave, pure phase (ordered,

solid); below \APmB: convex, d < 0, phase-separation, first or-

der; at the dark lines \APmB we have d(e, n) = 0: termination

lines of the first order transition; medium dark lines e.g.[CPm.:
v1 ·rd = 0; here the curvature determinant has a minimum
in the direction of the largest curvature eigenvector v1; in the
cross-region (light gray) we have: d = 0 ∧rd = 0 this is the
locus of the multi-critical point Pm where s(e, n) is flat up to
at least third order in ∆e and ∆n. The two horizontal lines
give the positions of the two cuts shown in Figures 5, 6.

even small positive curvature is an abnormal large cur-
vature); in the cross-region (light gray without grid) we
have: d = 0∧∇d = 0 this is the locus of the multi-critical
point Pm where s(e, n) is (numerically) flat up to at least
third order in ∆e and ∆n.

The convex region of phase separation corresponds to
the similar region in the Ising lattice gas, respectively the
original Ising model as function of magnetization, cf. the
darkly shaded region in Figure 2. The main new feature
of the phase diagram of the diluted (q = 3)-Potts model
compared to the diluted (q = 1)-Potts model is the critical
line from C to Pm.
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Fig. 5. Cut through the determinant d(e, n) along the line
shown in Figure 4 at const. n = 0.95, through the critical line
[CPm close to the critical point C of the ordinary Potts model
(n ∼ 1).
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Fig. 6. Cut through the determinant d(e, n) along the line
shown in Figure 4 at const. n = 0.57, slightly below the multi-
critical region. There are several zero points of the determinant
of curvatures: The left one is simultaneously a maximum with
r d = 0 and consequently critical as discussed above.

In Figure 4 the determinant of curvatures of s(e, n):

d(e, n) =

∥∥∥∥∥∥∥
∂2s

∂e2

∂2s

∂n∂e
∂2s

∂e∂n

∂2s

∂n2

∥∥∥∥∥∥∥ =
∥∥∥∥ see sensne snn

∥∥∥∥ = λ1λ2 (16)

is shown. On the diagonal we have the ground-state
of the 2-dim Potts lattice-gas with e0 = −2n, the
upper-right end is the complete random configuration
(here without contour lines), with the maximum allowed
excitation erand = − 2n2

q . In the region above the line

ĈPmB we have the disordered, “gas”. Here the entropy
s(e, n) is concave (d > 0), both curvatures are negative
(we have always the smaller one λ2 < 0). This is also the
case inside the triangle APmC (ordered, “solid” phase).
In these regions the Laplace integral equation (5) has a
single stationary point. They correspond to pure phases.

Below ÂPmB s(e, n) is convex (d < 0) cf. Figure 7,
corresponding to phase-separation, first order. At these
{e, n} the Laplace integral (5) has no stationary point.
Here we have a separation into coexisting phases, e.g.
solid and gas. Due to the inter-phase surface tension or
the negative contribution to the entropy by the additional
correlations at the phase boundaries (surface), s(e, n)
has a convex intruder with positive largest curvature.
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In [22,17] it is shown that the depth of the convex in-
truder in s(e, n) gives the surface tension.

At the dark lines like ÂPmB we have d(e, n) = 0. These
are the termination lines of the first order transition. At
these lines one of the two phases is depleted and beyond all
particles are in the other phase (solid or gas respectively).

Along the medium dark lines like P̂mC we have
v1 ·∇d = 0, here the curvature determinant has a min-
imum in the direction of the largest curvature eigenvec-
tor v1. The line P̂mC goes towards the critical point
of the ordinary (q = 3)-Potts model at e = −1.58,
n = 1. It corresponds to a critical line of second
order transition which terminates at the multicritical
“point” Pm. It is a deep valley in d(e, n) cf. Figure 5
which rises slightly up towards C. On the level of the
present simulation we cannot decide whether this rise
is due to our still finite, though otherwise sufficient,
precision or is a general feature of finite size. (The
largest curvature λ1 of s(e, n) has a local maximum with
λ1

<∼ 0, or d >∼ 0). Because of our finite interpolation
width of ∆e ∼ ±0.04, ∆n ∼ ±0.02 it might be that this
valley of d(e, n) gets a little bit filled up from its sides and
the minimum is rounded, cf. Figure 5. The valley converts
below the crossing point Pm into a flat ridge inside the
convex intruder of the first order lattice-gas transition see
also Figure 7.

In the cross-region (light gray in Fig. 4) we have:
d = 0∧∇d = 0. This is the locus of the multi-critical point
Pm where s(e, n) is (numerically) flat up to at least third
order in both directions ∆e and ∆n. It is at em ∼ −1,
nm ∼ 0.6 or βm = 1.48 ± 0.03, νm = 2.67 ± 0.02. Natu-
rally, Pm spans a much broader region in {e, n} than in
{β, ν}, remember s(e, n) is flat near Pm. This situation re-
minds very much the well known phase diagram of a 3He
–4He mixture in temperature vs. mole fraction of 3He cf.
Figure 3 in reference [30].

Figure 7 gives a 3D-view of the entropy-surface
s(e, n)− β0(e− e0)− ν0(n− n0) along a broad strip with
constant β = −1.85 (through the region of phase separa-
tion, roughly parallel to the ground state e0(n) = −2n).
The overall convex intruder of the first order transition is
well seen. In its middle the narrow ridge where s(e, n) is
again concave can be imagined. This is the origin of the
medium dark line P̂mD in Figures 3 and 4.

6.1 On the topology of curvatures

The two eigenvalues of the curvature matrix (16) are:

λ1,2 =
see + snn

2
± 1

2

√
(see + snn)2 − 4d (17)

and the corresponding eigenvectors are:

vλ =
1√

(see − λ)2 + s2
en

(
−sen
see − λ

)
. (18)

At critical points the following conditions hold:

d = −∂(βν)
∂(en)

= L2D = 0 (19)

seesnn = s2
en. (20)

Here the directions β =const. and µ = const. are parallel
and we have:

∂β

∂e

∣∣∣∣
ν

=
d

snn
= 0 (21)

∂ν

∂n

∣∣∣∣
β

=
−d
see

= 0. (22)

λ1 = 0 (23)
λ2 = see + snn (24)

vλ=0 =
1√

s2
ee + s2

en

(
−sen
see

)
(25)

vλ≤0 =
1√

s2
nn + s2

en

(
sen
snn

)
. (26)

The vanishing of d is not sufficient for criticality. Phys-
ically, it means that the surface entropy (tension) and with
it the interface separating coexistent phases disappears.
This, however, can also signalize a depletion of one of the
two phases. At a critical end-point, however, the interface
disappears at a non vanishing number of atoms in each
of the two phases, i.e. in an infinitesimal neighborhood
of a critical point, d must remain zero. In a topologically
formulation a critical end-point of first order transition is
at:

d = 0 (27)

and

v1 ·∇d = 0. (28)
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Fig. 8. Direction of the largest principal curvature v1.

This is a generalization of the well-known condition for
a continuous transition in one dimension: the simultane-
ous vanishing of β′(e) = 0 and of the curvature of β(e),
β′′(e) = 0.

Figure 8 shows a map of some trajectories which follow
the eigen-vector v1 with the largest curvature eigen-value
λ1. In the region of the convex intruder (λ1 > 0) i.e. the
region of phase-separation v1 is ∼ parallel to the ground
state e = −2n. Also the lines of β = const. and µ =
const. follow approximately this direction. Their Jacobian
∂(βν)/∂(en) = d(e, n) is negative but small. This reminds
of the situation in the thermodynamic limit where this
region of phase coexistence is flat, both intensive variables
are constant and the Jacobian d → −0. One can also see
in Figure 8 how the direction of the largest curvature v1

turns into the e-direction when one approaches the critical
point C of the ordinary (q = 3)-Potts model at n = 1.

Inspection of Figure 4 shows that along the line ĈPm
of second order transition v1 ·∇d = 0, i.e. d(e, n) has a
deep and sharp valley. This line is the locus of a minimum
of d in the direction of the largest eigenvalue v1 of the cur-
vature. In the direction of ĈPm the determinant d(e, n) is
slightly growing towards the ordinary Potts critical point
C. Figure 9 shows an original narrow histogram of s(e, n),
(∆e = 0.08 and ∆n = 0.04) on the line ĈPm near to
the point C which shows that the curvature of s(e, n) is
rather small in the direction of the larger curvature eigen-
vector v1.

At n = 1 we know that for an infinite system the or-
dinary (n = 1) three states Potts model has a second
order transition at e = −1.58 where the curvature of s(e)
vanishes, see = 0; i.e. the component v1 ·∇d of ∇d in-
dicates nicely the locus of the second order “temperature
driven” transition of the ordinary Potts model.

6.2 The information lost in the grand-canonical
ensemble

Figure 10 explains what happens if one plots the entropy s
vs. the “intensive” quantities β = ∂S/∂E and ν = ∂S/∂N
as one would do for the grand-canonical ensemble: as there
are several points Ei, Nk with identical β, ν, smicro(β, ν)
is a multivalued function of β, ν. Here the entropy sur-
face smicro(e, n) is folded onto itself. In the projection in
Figure 10, these points show up as a black critical line
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Fig. 9. Histogram of s(e, n) − (e − e0)β(e0, n0) − (n −
n0)ν(e0, n0) at e0 = −1.48, n0 = 0.94 in the rectangle e0±0.04,

n0 ± 0.02 viewed in the direction of the valley[PmC of d(e, n),
the second-order critical line towards the critical point C of the
ordinary q = 3-Potts model at e = −1.58. The approximate
vanishing of the largest curvature in the direction v1 (pointing
from left to right) at this point e0, n0 is clearly seen.

(dense region). Here this black line continues over the
multi-critical point Pm towards C indicating the direction
to the critical point of the ordinary q = 3 Potts model at
n = 1 (zero vacancies). Between Pm and C the slopes

∂s

∂β

∣∣∣∣
ν

=
1
d

[βsnn − νsne] (29)

or

− ∂s

∂ν

∣∣∣∣
β

=
1
d

[βsen − νsee] (30)

are negative large but finite.
The information given by the projection would be

all information which can be obtained from the conven-
tional grand-canonical entropy s(T, µ, V ), if we would have
calculated it from the Laplace transform (Eq. (5)). The
shaded region will be lost.

The upper part of Figure 10 shows smicro(β, ν) in a
three-dimensional plot. The lines building the entropy
surface are lines of equal β. The images of the points
A,D,B,C defined in Figure 4 are roughly indicated. The
convex intruder between the lines ÂPmB and ÂDB be-
comes folded back and can here be seen only from its side
(shadowed). It is jumped over in equation (5) and gets con-
sequently lost in Z(T, µ). This demonstrates the far more
detailed insight into phase transitions and critical phe-
nomena obtainable by micro-canonical thermo-statistics
which is not accessible by the canonical treatment, cf. the
similar arguments of Gibbs [21].

In the next two figures the cross-section through
s(β, ν) at constant β is shown in Figure 11 below the
multi-critical point βm = 1.48 and in Figure 12 above
it. The latter clearly shows the back-bending of s(β, ν).
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7 Convex entropy — Violation of the Second
Law?

At this point it is worth-wile to spend some words on
a popular misunderstanding connected with the eventual
convexity of the entropy as function of “extensive” quan-
tities like the energy: The convex parts of S(E,N) violate
van Hove’s concavity condition [19,31].

One may believe that this is also in contradiction
to the second law of thermodynamics: At a convex re-
gion of S(E,N) a split of the system into two pieces
with entropies S1(E1, N1) and S2(E2, N2) would yield
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Fig. 12. Plot of the entropy s(β = 1.7, ν).

S1(E1, N1) + S2(E2, N2) > S(E1 + E2, N1 + N2). So the
system seems to gain entropy by splitting.

This, however, is an error. The Boltzmann entropy
as defined in Section 2 is already the logarithm of the
sum over all possible configurations of the system at the
given energy. The split ones are a subset of these. Their
partial phase space Wsplit is of course ≤ the total W .
The entropy Ssplit = ln(Wsplit) is ≤ the total entropy.
Evidently, the split system looses some surface entropy
Ssurf at the separation boundary due to additional corre-
lations imposed on the particles at the boundary, see the
discussion in Section 3. The entropy after split is conse-
quently:

Ssplit = S1(E1, N1) + S2(E2, N2)− Ssurf

≤ S(E1 +E2, N1 +N2). (31)

It is a typical finite size effect. Ssurf/V vanishes in the limit
V →∞ for interactions with finite range. The entropy is
non-extensive for finite systems but becomes extensive in
the limit, and van Hove’s theorem [19] is fulfilled. This is of
course only under the condition that limV→∞ Ssurf/V = 0.

In general this is of course a trivial conclusion: an ad-
ditional constraint like an artificial cut of the system can
only reduce phase space and entropy. The second law is au-
tomatically satisfied in the Boltzmann formalism whether
S is concave or not, whether S is “extensive” or not.

A positive (wrong) curvature introduces problems to
the geometrical interpretation of thermodynamics as for-
mulated by Weinhold [32,33] which relies on the non-
convexity of S(E,N). Weinhold introduces a metric like

gik = − ∂2S

∂Xi∂Xk
(32)

where we identify:

X1 = E

X2 = N.

The thermodynamic distance is defined as:

∆a,b =
√

[Xi(a)−Xi(b)]gik[Xk(a)−Xk(b)]. (33)

Evidently, a negative metric gik is here not allowed. Of
course Weinhold’s theory does not apply to finite systems
with phase transitions.
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8 Conclusion

Micro-canonical thermo-statistics describes how the en-
tropy s(e, n) as defined entirely in mechanical terms by
Boltzmann depends on the conserved “extensive” vari-
ables: energy e, particle number n, angular momentum L
etc. It is well-defined for finite systems without invoking
the thermodynamic limit. Thus in contrast to the con-
ventional theory, we can study phase transitions also in
“small” systems or other non-extensive systems. In this
simulation we could classify phase transitions in a “small”
system by the topological properties of the determinant
of curvatures d(e, n), equation (16) of the micro-canonical
entropy-surface s(e, n):

– A single stable phase by d(e, n) > 0.
– A transition of first order with phase separation by
d(e, n) < 0. The depth of the intruder is a measure of
the inter-phase surface tension [34,22]. This region is
bounded by a line with d(e, n) = 0. On this line Pm
is a critical end-point where additionally v1 ·∇d = 0
in the direction of the eigenvector of d(e, n) with the
largest eigenvalue λ1.

– There, the transition is continuous (“second order”)
with vanishing surface tension, and no convex intruder
in s(e, n). Here two neighboring phases become indis-
tinguishable, because there are no interfaces. However,
we found a further line (P̂mC, critical) with v1·∇d = 0
which does not border a region of negative d(e, n). Pre-
sumably d(e, n) should be 0 also. This needs further
tests in other systems. It may also be that these lines
signalize transitions of first order in other, but hidden
conserved degrees of freedom.

– Finally a multi-critical point Pm where more than two
phases become indistinguishable by the branching of
several lines with d = 0 or with v1 ·∇d = 0 to give a
flat region with additionally ∇d = 0.

Our classification of phase transitions by the topolog-
ical structure of the micro-canonical Boltzmann entropy
s(e, n) is close to the natural experimental way to iden-
tify phase transitions of first order by the inhomogeneities
of phase separation boundaries. This is possible because
the micro-canonical ensemble does not suppress inhomo-
geneities in contrast to the grand-canonical one, as was
emphasized already by Gibbs [21]. Inter-phase boundaries
are reflected in “small” systems by the convex intruder in
the entropy surface. With this extension of the definition
of phase transitions to “small” systems there are remark-
able similarities with the transitions of the bulk. More-
over, this definition agrees with the conventional definition
in the thermodynamic limit (of course, in the thermody-
namic limit the largest curvature λ1 approaches 0 from
above at phase transitions of first order). The region of
phase separation remains inaccessible in the conventional
grand-canonical ensemble.

We believe, however, that the various kind of tran-
sitions discussed here have their immediate meaning in
“small” and non-extensive systems independently whether
they are the same in the thermodynamic limit (if this then
exist) or not. For systems like the Potts model that have

a thermodynamic limit it might well be possible that the
character of the transition changes towards larger system
size.

The great conceptual clarity of micro-canonical
thermo-statistics compared to the grand-canonical one is
clearly demonstrated. Not only that, we showed that the
micro-canonical statistics gives more information about
the thermodynamic behaviour and more insight into the
mechanism of phase transitions than the canonical ensem-
ble: About half of the whole {E,N} space, the intruder of
S(E,N) or the region between the ground state and the
line ÂPmB in Figure 4, gets lost in conventional grand-
canonical thermodynamics. Without any doubts this con-
tains the most sophisticated physics of this system. We
emphasized this point already in [28] there, however,
with still limited precision. Due to our refined simula-
tion method this could be demonstrated here with uni-
formly good precision in the whole {E,N} plane. Finally,
we should mention that micro-canonical thermo-statistics
allowed us to compute phase transitions and especially
the surface tension in realistic systems like small metal
clusters [17]. Our finding clearly disproves the pessimistic
judgement by Schrödinger [35] who thought that Boltz-
mann’s entropy is only usefull for gases. A recent appli-
cation of micro-canonical thermo-statistics to thermody-
namically unstable, collapsing systems under high angular
momentum is found at [36].

D.H.E.G. thanks M.E. Fisher for the suggestion to study the
Potts-3 model and to test how the multicritical point is de-
scribed micro-canonically. We thank H. Jaqaman for critical
reading. We are gratefully to the DFG for financial support.
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